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Introduction
Being a widely used commercial technique in producing large, single crystals,
Czochralski method has attracted the attention of many researchers. In this
method, the modeling and understanding of heat and mass transfer is an
important issue in the optimization of such technique to grow more uniform
and better quality crystals. There are many models for the numerical simulation
of flows in Czochralski crystal growth. Among them, the bulk-flow model is
popularly used. There are three major forces involved in this problem, that is,
the buoyancy force due to melt motion, the centrifugal pumping due to rotation,
and the shear stress at the free surface due to surface tension gradients. Many
solvers have been developed to simulate the Czochralski bulk flows over the last
two decades. These solvers are usually based on the low order methods such as
finite element, finite difference and finite volume methods[1-8]. A comprehen-
sive review for these solvers has been given by Brown et al.[9]. In general, low
order methods require a large number of grid points to obtain accurate
numerical solutions. Subsequently, they need a lot of computational effort and
virtual storage. From the point of practical application, one is always interested
in an efficient numerical method which can generate accurate numerical
solutions using small computational resources.

It has been shown by Shu et al.[10-13] that the global method of generalized
differential quadrature (GDQ) is a very efficient numerical method which can
obtain accurate numerical results using a considerably small number of grid
points and thus requiring much small computational resources. GDQ method
approximates a spatial derivative with respect to a coordinate direction at a grid
point by a linear weighted sum of all the functional values in that direction. The
GDQ method was developed to improve the differential quadrature (DQ)
method[14] in computing the weighting coefficients of derivative approxi-
mation. Through the analysis of a high order polynomial approximation and
the analysis of a linear vector space, GDQ computes the weighting coefficients
of the first order derivative by a simple algebraic formulation, and the
weighting coefficients of the second and higher order derivatives by a
recurrence relationship. So far, the GDQ method has been successfully applied
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to solve some incompressible flow problems[10-13] and structural problems[15-
17] with high efficiency.

To further validate the prominent advantages of GDQ method, it is
interesting to apply this method to simulate the Czochralski bulk flows. The
benchmark problem suggested by Wheeler is chosen as a test problem for the
study. It is noted that for Wheeler’s benchmark problem, the change of
boundary conditions at the junction point between the crystal and the free
surface of the melt introduces a singularity for vorticity. Since the singular
point is not at the corner of the computational domain, it may have some effects
on the solution of interior region. As will be shown in the paper, when the GDQ
method is applied in the whole computational domain, there will be some
oscillations in the vorticity distribution due to the effect of singularity. This
phenomena has also been highlighted by Raspo et al.[18]. To remove the effect
of singularity, the multi-domain technique is proposed. The idea of a multi-
domain technique is to decompose the whole domain into several subdomains
in such a way that the singular points become the corner points of some
subdomains. When the GDQ method is applied in each subdomain, the
boundary conditions at its four corner points have no contribution to the
solution of interior region. Thus, the effect of singularity is completely removed.
It should be indicated that the multi-domain approach can also be applied to
solve complex problems. As mentioned earlier, the GDQ method is locally
applied in each subdomain for the multi-domain GDQ approach. The
information exchange between neighboring subdomains is conducted through
the interface. Obviously, the interface treatment is a key procedure in the multi-
domain GDQ approach. In this study, four interface approximations are
presented, and then compared through their applications to Wheeler’s[19]
benchmark problem. After numerical discretization, the resultant algebraic
equations are solved by SOR iterative method.

Generalized differential quadrature
GDQ formulation
GDQ method is based on the analysis of a high order polynomial approximation
and the analysis of a linear vector space. GDQ first assumes that the solution of
a partial differential equation is approximated by a high order polynomial.
Then it is easy to prove that the (N-1)th order polynomial constitutes an 
N-dimensional linear vector space. In the N-dimensional linear polynomial
vector space, there exists a set of base polynomials, and any polynomial in the
space can be uniquely expressed by a linear combination of all the base
polynomials. Thus, if all the base polynomials satisfy a linear formulation, so
does any polynomial in the space even though the exact expression of this
polynomial is unknown. This property guarantees that if all the base
polynomials satisfy a linear equation, so does the solution of a partial
differential equation which is approximated by a high order polynomial.
Through this way, the weighting coefficients of any order derivative discretiza-
tion can be determined by a proper choice of base polynomials in the vector
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space. The weighting coefficients of the first order derivative are calculated by
a simple algebraic formulation, and the weighting coefficients of the second and
higher-order derivatives are given by a recurrence relationship. The details of
GDQ method is shown in reference 10. In the following, the two-dimensional
results are presented. For a smooth function f(x,y), GDQ discretizes its nth order
derivative with respect to x, and the mth order derivative with respect to y, at
the point (xi, yj) as

(1)

(2)

for i = 1, 2, …, N; j = 1, 2, …, M,
where N, M are the number of grid points in the x and y direction respectively,

w(n)
ik, W

– (m)
jk are the weighting coefficients to be determined as follows:

Weighting coefficients for the first-order derivative

(3)

(4)

where

Weighting coefficients for the second- and higher-order derivatives

(5)

for i, j = 1, 2, …, N, but j ≠ i, n = 2, 3, …, N –1,

(6)

for i, j = 1, 2, …, M, but j ≠ i, m = 2, 3, …, M –1.
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When j = i, the weighting coefficients are given by

(7)

(8)

Multi-domain GDQ scheme
It is assumed that the physical domain of a problem can be represented by Ω
and the boundary by Γ . The multi-domain technique, first, decomposes the
domain Ω into several subdomains. In each subdomain, the local GDQ scheme
is applied in the same fashion as application of the scheme in a single domain.
The solutions for interior grid points are independent for each subdomain.
Globally, the information exchange between subdomains is required. This can
be done across the interface of subdomains. Since any complex geometry can
be transformed into a rectangular domain or a combination of rectangular
subdomains, a rectangular domain is chosen for demonstration without
losing generality. Basically, there are two kinds of interface topology, patched
and overlapped. In the following, four ways are presented to evaluate the
functional value along the interface. Three ways are in the category of
patched interface while the other is for the overlapped interface.

Patched interface
The topology of a patched interface is shown in Figure 1, where Γ ij is the
interface between two subdomains Ωi and Ωj. For the patched interface, the
governing equation is not applied along the interface. Instead, the continuity
condition is enforced. The common choice is to keep the function and its normal
derivative continuous across the interface. In other words, the function is
considered as C1 continuity across the interface. Mathematically, this continuity
condition can be written as 

(9)

Figure 1.
Topology of a patched

interface

n

Γ ij

Ωi Ωj
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(10)

where f(xi
N), f(xj

l ) represent the values of the function f at the interface of the 
i-subdomain and the j-subdomain, and fn(Xi

N ), fn(X
j
l ) represent the values of the

first-order derivative of f with respect to n at the interface. Equation (9) can be
easily implemented. However, the implementation of equation (10) involves the
approximation of the first order derivative. Different approximations of the first
order derivative would give different formulations to update the functional
value along the interface. In the following, three methods are suggested to
approximate the first order derivative and then generate the formulation to
evaluate the functional value at the interface.

Method I
For this method, the GDQ scheme is applied to discretize the first order
derivatives in equation (10). For the case selected for study, each subdomain is
rectangular. Then the normal direction to the interface is parallel to one
coordinate axis in the local coordinate system. For simplicity, this coordinate
axis can be assumed as the x axis, and along this direction there are N grid
points in the i subdomain and M grid points in the j subdomain. The weighting
coefficients of the first-order derivative along the x direction are written as a i

mn
in the i subdomain and as a j

mn in the j subdomain. Thus, using the GDQ
approach, equation (10) can be approximated by

(11)

Using equation (11), and setting f(Xi
N ) = f(X j

1 ) = f
–

, we obtain

(12)

where f
–

is the value of the function f at the interface Γ ij, which exchanges
information between the two neighboring subdomains.

Method II
For this method, the first order finite difference scheme is used to discretize the
first order derivatives in equation (10). It is supposed that the spacing between
the interface point and its adjacent point in the subdomain Ωi is ∆x1, and the
spacing between the interface point and its adjacent point in the subdomain Ωj
is ∆x2, that is, 

Applying the first order finite difference scheme to equation (10) gives,
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(13)

which can be further reduced to 

(14)

Method III
If for simplicity, the difference between ∆x1 and ∆x2 in equation (13) is ignored,
then equation (14) can be simplified as 

(15)

Note that the above equation can also be derived from the simple averaging
technique.

Overlapped interface. The topology of an overlapped interface is shown in
Figure 2, where subdomain ABCD is overlapped with subdomain EFGH. It is
noted that the right boundary of subdomain Ωi, BC, is in the interior of
subdomain Ωj, and the left boundary of subdomain Ωj, EH, is in the interior of
subdomain Ωi. 

Method IV
For the overlapped interface, the governing equations are also applied along the
interface. It is supposed that the solution in the interior of subdomains is known
at an iteration level. Then the functional values along the lines of BC and EH are
known. These values are then transferred into neighboring subdomains as new
boundary conditions to get the solution in the interior of subdomains at the next
iteration, i.e. the values along EH are transferred into subdomain Ωj, and the
values along BC are transferred into subdomain Ωi. This process continues
until converged solutions in all subdomains are obtained. For the overlapped

Figure 2.
Topology of an

overlapped interface

Ωi Ωj

A F

D GH C

E B
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topology, the functional values at the interface are given from the solution of
governing equations.

Governing equations and boundary conditions
The non-dimensional governing equations can be written as[19]

(16)

(17)

(18)

(19)

(20)

where 

The above equation system has been non-dimensionalised in the following
manner,

(21)

where (u,v,w) are radial, azimuthal and axial velocity components, (r,z) are polar
coordinates, R is radius, t is time, p is pressure, T is temperature, υ is kinematic
viscosity, g is gravitational acceleration, ρ is density of the melt, the over bar
denotes a dimensional variable and a subscript denotes differentiation with
respect to the subscript variable. However the subscripts x and c represent
crystal and crucible respectively.

The boundary conditions are given by
u = v = wr = Tr = 0 for r = 0, 0 ≤ z ≤ α,
u = w = 0, v = ReC, T = 1 for r = 1, 0 ≤ z ≤ α,
u = w = TZ = 0, v = rReC for 0 ≤ r ≤ 1, z = 0, (22)
u = w = T = 0, v = rReX for 0 ≤ r ≤ β, z = α.
u = v = w = 0, T = (r–β)/(1–β) for β ≤ r ≤ 1, z = α.

The nondimensional parameters that occur in equation (22) are the aspect
ratios, 

(23)

the Reynolds numbers,
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(24)

and the Prandtl and Grashof numbers,

(25)

where β– is the coefficient of volumetric thermal expansion of the melt, RX is the
crystal radius, H is the height of melt, ΩX and ΩC are the angular velocities of
crystal and crucible respectively, TC is the temperature of the crucible wall, TX
is the crystal temperature. In this study, the aspect ratios and the Prandtl
number are fixed at:

α = 1.0, β = 0.4, Pr = 0.05. 
To save computer resource and avoid calculating the pressure in the momentum
equations, we transfer the momentum equations in the radial and axial
directions into the vorticity form. It is noted that the common choice of the
momentum equation for the azimuthal velocity component together with the
continuity equation and the temperature equation may cause serious deviation
and instability due to the presence of a strong inward component of radial flow
induced by thermocapillarity. To overcome this difficulty and make
computation more stable, Langlois[7] suggested using Ω = rv to replace the
azimuthal component in the equation governing the azimuthal component, and
using S = ω/r rather than ω as a dependent variable in the vorticity equation.
This suggestion has been further validated by Kim et al.[8]. So the final
equations can be written as

(26)

(27)

(28)

(29)

where the vorticity ω and Stokes stream function ψ are defined as 

(30)

The boundary conditions on four boundaries are then changed to
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(31)

on the symmetry lines,

(32)

on the growth interface,

(33)

on the free surface,

(34)

on the crucible bottom,

(35)

on the crucible wall.

Numerical algorithms
Numerical discretization
Application of GDQ method to discretize the spatial derivatives in equations
(26-29) gives

(36)

(37)

(38)
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(39)

Where AXij, BXij are the weighting coefficients related to ∂–∂r, and ∂2
—
∂r2, AYij, BYij

are the weighting coefficients related to ∂–∂z and ∂2—
∂z2

, N, M are the number of grid
points in the r and z direction respectively.

After applying the first order Euler implicit scheme to discretize the time
derivative in equations (36-38), equations (36-39) can then be written as the
following uniform expression

(40)

for i = 1, 2, …, N; j = 1, 2, … M, 
where φij , Pik, Qjk and Bij are taken as for equation (36) ,

(41)

for equation (37), 

(42)

for equation (38), 
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for equation (39), 

(44)

Solution of algebraic equations by SOR iterative method
The conventional SOR method for Aφ = b, where φ is a vector, can be expressed
as

(45)

The extended form for Pφ + φQ = B can be obtained as

(46)

for i = 1, 2, …, N; j = 1, 2, … M,
where n is the iteration number, φ = S, Ω, T, ψ respectively.
The convergence criteria are taken as

(47)

for S, δ is chosen as 10–5, while for Ω, T, ψ, δ is taken as 10–7.
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Results and discussion
To show the effect of singularity on the numerical solution in the single domain
GDQ approach and validate the performance of four interface approximations
in the multi-domain GDQ approach, three cases of Wheeler’s problem are
chosen for study. The geometry of three cases is the same as that shown in
Figure 3. The conditions for these three cases are given as follows,

Case A:
Gr = 0, Rec = 0, Rex = 100
Case B:
Gr = 0, Rec = –25, Rex = 100
Case C:
Gr = 105, Rec = 0, Rex = 0

It is noted that for case A, the flow is generated by rotation of the crystal, while
for case B, the flow is generated by opposite rotations of the crystal and the
crucible. Case C is a natural convection problem.

Influence of singularity
For cases A , B, and C, the change of boundary conditions at the junction
between the crystal and the melt free surface induces a singularity in the
vorticity. Furthermore, the presence of the coordinate singularity at the axis 
r = 0 makes the problem more complicated. It was found that when GDQ
method is applied in the whole domain, the vorticity distribution shows a high
spurious oscillation. However, when the whole domain is decomposed into two
subdomains and the multi-domain GDQ approach is applied, the spurious
vorticity oscillation can be greatly damped. This can be observed in Figures 4,
5, and 6. Figures 4a and 4b compare the single domain vorticity distribution
and the multi-domain vorticity distribution at z = 0.995 for Case A. The

Figure 3.
Configuration of

Czochralski crystal
growth

r

Melt free surface

1

H

Crystal

Symmetry axis

Gravity

0.4

z
Rc

Rx

Ω2Ω1
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Figure 4a.
Vorticity profile below
the crystal-melt free
surface boundary 
(z = 0.995) for case A by
single-domain method
(mesh 15 × 15)
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Figure 4b.
Vorticity profile below
the crystal-melt free
surface boundary 
(z = 0.995) for case A by
multi-domain method
(mesh 15 × 15 – 15 × 15)
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Figure 5a.
Vorticity profile below

the crystal-melt free
surface boundary 

(z = 0.995) for case B by
single-domain method

(mesh 15 × 15)
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Figure 5b.
Vorticity profile below

the crystal-melt free
surface boundary 

(z = 0.995) for case B by
multi-domain method

(mesh 15 × 15 – 15 × 15)
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Figure 6a.
Vorticity profile below
the crystal-melt free
surface boundary 
(z = 0.995) for case C by
single-domain method
(mesh 15 × 15)

1.000.800.600.400.200.00

40.00

0.00

–40.00

–80.00

–120.00
r

ω

Figure 6b.
Vorticity profile below
the crystal-melt free
surface boundary 
(z = 0.995) for case C by
multi-domain method
(mesh 15 × 15 – 15 × 15)
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respective comparison is shown in Figures 5a and 5b for Case B, and Figures 6a
and 6b for Case C. It is noted that for all the cases considered, the Lagrange
interpolation scheme is used to obtain the vorticity at z = 0.995. The single
domain results are obtained by a mesh size of 15 × 15. For the multi-domain
results, a mesh size of 15 × 15 is used in each subdomain and method IV is
applied to update the functional value along the interface. It can be seen clearly
from the figures that for the single domain case, the vorticity distribution
exhibits great oscillations in particular near the axis and the junction point
between the crystal and the melt free surface. However, for the multi-domain
case, these oscillations are almost damped and the vorticity reveals a smooth
distribution. The superiority of the multi-domain solution is clearly visible. By
simply splitting the domain into two subdomains at the junction point of the
crystal and melt free surface, the singularity is isolated.

Multi-domain results and discussion
Using the multi-domain technique, the whole computational domain is
decomposed into two subdomains as shown in Figure 3, that is, Ω1 contains the
boundary of the crystal and Ω2 contains the melt free surface. The
computational process will be carried out in these two subdomains separately
while the solutions are coupled through the interface by imposing different
interface approximation methods. The discretized governing equations by GDQ
method are solved by SOR iteration method. The minimum and maximum
values of stream function computed by multi-domain GDQ method for cases A,
B, and C are listed in Tables I, II, and III respectively. Also included in these
Tables are the results of Buckle et al.[5] obtained by the second-order finite
difference and finite volume method with a mesh of 65 × 65, and the results of

Interface method Ψmin Ψmax

GDQ 13 × 13 Method II –2.2494 × 10–1 5.1872 × 10–6

13 × 13 Method III –2.1110 × 10–1 4.5781 × 10–6

Method IV –2.1698 × 10–1 6.1706 × 10–6

GDQ 15 × 15 Method II –2.3230 × 10–1 4.9137 × 10–6

15 × 15 Method III –2.2040 × 10–1 4.7109 × 10–6

Method IV –2.1954 × 10–1 5.1192 × 10–6

GDQ 17 × 17 Method II –2.3903 × 10–1 5.6694 × 10–6

17 × 17 Method III –2.2880 × 10–1 5.5219 × 10–6

Method IV –2.2131 × 10–1 5.0324 × 10–6

GDQ 21 × 21 Method II –2.5618 × 10–1 5.9329 × 10–6

21 × 21 Method III –2.4863 × 10–1 5.8176 × 10–6

Method IV –2.2176 × 10–1 5.0794 × 10–6

Buckle
et al.[5] 65 × 65 –2.3447 × 10–1 1.5642 × 10–6

Xu
et al.[6] 80 × 80 –2.0864 × 10–1 3.1399 × 10–6

Table I.
Comparison of 

multi-domain GDQ 
scheme using different 

interface approximations 
for case A (Gr = 0; 
Rec = 0, Rex = 100)
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Interface method Ψmin Ψmax

GDQ 13 × 13 Method I –6.4949 × 10–2 1.2682 × 10–1

13 × 13 Method II –4.0624 × 10–2 1.2311 × 10–1

Method III –1.9808 × 10–2 1.5228 × 10–1

Method IV –4.8835 × 10–2 1.1157 × 10–1

GDQ 15 × 15 Method I –6.5521 × 10–2 1.2765 × 10–1

15 × 15 Method II –4.2016 × 10–2 1.2405 × 10–1

Method III –2.0564 × 10–2 1.5490 × 10–1

Method IV –4.8227 × 10–2 1.1350 × 10–1

GDQ 17 × 17 Method I –6.6210 × 10–2 1.2825 × 10–1

17 × 17 Method II –4.3340 × 10–2 1.2449 × 10–1

Method III –2.1367 × 10–2 1.5643 × 10–1

Method IV –4.8039 × 10–2 1.1473 × 10–1

GDQ 21 × 21 Method I –6.7663 × 10–2 1.2904 × 10–1

21 × 21 Method II –4.5319 × 10–2 1.2487 × 10–1

Method III –2.2594 × 10–2 1.5811 × 10–1

Method IV –4.7908 × 10–2 1.1620 × 10–1

Buckle et al.[5]
65 × 65 –5.0203 × 10–2 1.1796 × 10–1

Xu et al.[6]
80 × 80 –4.3090 × 10–2 1.1851 × 10–1

Table II.
Comparison of 
multi-domain GDQ 
scheme using different 
interface approximations 
for case B (Gr = 0; 
Rec = 25, Rex = 100)

Interface method Ψmin Ψmax

GDQ 13 × 13 Method I –3.3719 × 10–3 2.8558 × 101

13 × 13 Method II –2.3009 × 10–3 2.8416 × 101

Method III –9.5615 × 10–4 2.9156 × 101

Method IV –5.5832 × 10–2 2.8500 × 101

GDQ 15 × 15 Method I –2.8772 × 10–4 2.8617 × 101

15 × 15 Method II –3.2236 × 10–4 2.8488 × 101

Method III –6.0718 × 10–4 2.9152 × 101

Method IV –2.4643 × 10–2 2.8492 × 101

GDQ 17 × 17 Method I –1.9258 × 10–4 2.8452 × 101

17 × 17 Method II –2.1634 × 10–4 2.8428 × 101

Method III –4.0388 × 10–4 2.9083 × 101

Method IV –1.1077 × 10–2 2.8438 × 101

GDQ 21 × 21 Method I –6.9638 × 10–5 2.8376 × 101

21 × 21 Method II –7.9351 × 10–5 2.8384 × 101

Method III –1.5547 × 10–4 2.9055 × 101

Method IV –1.1760 × 10–5 2.8416 × 101

Buckle et al.[5]
65 × 65 –1.1936 × 10–3 2.8437 × 101

Xu et al.[6]
80 × 80 –1.1480 × 10–2 2.8213 × 101

Table III.
Comparison of 
multi-domain GDQ 
scheme using different 
interface approximations 
for case C (Gr = 105; 
Rec = 0, Rex = 0)
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Xu et al.[6] using the second-order upwind QUICK scheme with a mesh of 
80 × 80. All the computational work in this paper were carried out on CRAY-J916
supercomputer using the 64-bit precision. 

The multi-domain GDQ results are obtained by four interface approxima-
tions. It can be seen from the tables that the convergence trend of multi-domain
GDQ solution is fairly obvious. When comparing the maximum absolute
values of stream function, that is, the minimum value for case A and the
maximum values for cases B and C, it was found that the difference between
the results obtained from a mesh of 17 × 17 in each subdomain, and those from
the mesh of 21 × 21 in each subdomain is less than 0.2 percent for case A, 1
percent for case B, and 0.1 percent for case C. However, if we compare the same
results between the two low-order methods provided by Buckle et al.[5] and Xu
et al.[6], it can be seen that the difference for case A is more than 10 percent,
and for cases B and C, it is around 1 percent. It seems that, our results using the
mesh size of 21 × 21 in each subdomain are more accurate. Hereafter, all results
discussed are based on the mesh size of 21 × 21 in each subdomain. When
comparing the minimum absolute values of the stream function, that is, the
maximum value for case A and minimum values for cases B and C, we can find
that the results given by multi-domain GDQ approach, finite difference method
of Buckle and Schafer[5] and control volume method of Xu et al.[6] are not so
consistent, and the difference is more evident in case C. This may be because
the values are too small to be resolved by numerical methods irrespective of
whether it is high-order or low-order. The difference may also be attributed to
the process in obtaining the values of stream function. For the results of Buckle
and Schafer[5] and Xu et al.[6], the values of stream function are obtained
indirectly from the solution of primitive-variable equation system. They are
given by the convergent solution of velocity field. For the multi-domain GDQ
results, the values of stream function are directly resulted from the solution of
vorticity-stream equation system. So, the present results may be more
accurate.

When the results of the finite-difference method by Buckle and Schafer[5]
using a mesh of 65 × 65 are taken as reference, it was found that the overlapped
interface approximation (method IV) provides the most accurate results, while
the results of the patched methods are less accurate. It is noted that in method
IV, the functional values at the interface are given by the solution of governing
equations without applying any artificial approximation. Moreover, within
every iteration step, the numerical information of two subdomains is exchanged
in a two-way direction in the overlapped area. This explains why the results
obtained by overlapped interface approximation are more accurate than those
by patched interface approximations which will be discussed later. It is worth
noticing that even at a coarse mesh of 13 × 13 in method IV, the results are still
reasonable. This further demonstrates the high accuracy and efficiency of the
present multi-domain GDQ method.

Similarly, if we compare the results by three patched interface approxima-
tions (method I, II, and III) with those of Buckle and Schafer[5], we can find that
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the results given by finite-difference first-order approximation (method II) are
more accurate than those given by GDQ first-order approximation (method I),
while the simple averaging method (method III) gives the least accurate results.
This is because for patched interface, the governing equation is not applied
along the interface. Instead, an enforced condition that the dependent variables
and their first-order normal derivatives across the interface are continuous is
applied. In other words, the function is considered as C1 continuity across the
interface. For the finite difference first-order approximation, it is exactly a linear
approximation across the interface, and this is coincident with the enforced
condition of interface assumption. Thus, it gives relatively more accurate
results. The GDQ first-order approximation, as discussed in the earlier section,
is a global method using high-order polynomial approximation. Therefore, it is
overqualified when applied to a function with C1 continuity across the interface,
because the second- and higher-order terms may not cancel out fully and the
remaining high-order error may accumulate and spread into the whole
computational domain. This can explain why as a high-order method, GDQ
first-order approximation is less accurate than the low-order method, i.e. finite
difference first-order method. For method III using simple averaging, it requires
an uniform mesh to obtain accurate results. However, in our test cases, the mesh
used is not equally spaced and the influence of grid coordinates cannot be
neglected. Thus this approximation is insufficient to give reasonable functional
values at the interface; and if method III is applied to non-uniform meshes, it
will give a result with huge deviation. 

Figures 7-9 show the streamlines and isotherms of multi-domain GDQ
results obtained by method IV using the mesh size of 21 × 21 in both
subdomains for cases A, B, and C respectively. When the crystal rotates in case
A, one vortices will be generated; while the crystal and the crucible rotate at
opposite directions in case B, two vortices of different direction will be generated
due to the rotation of the crystal and crucible. When both of the crystal and
crucible are at rest in case C, the buoyancy force dominates the flow.

Figure 7.
Flow configuration for
case A by multi-domain
method (mesh 21 × 21 –
21 × 21)
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Conclusions
The multi-domain GDQ method can obtain accurate numerical results by using
much smaller number of grid points and hence requiring very small
computational resources when compared to low order methods. The overlapped
interface approximation method provides the most accurate numerical solution
among the four interface approximations presented in this paper. And the finite
difference first-order approximation gives the best results among the three
patched interface approximations. The simple averaging interface approxima-
tion method produces the least accurate results and can be treated as an
inefficient method.

Figure 8.
Flow configuration for

case B by multi-domain
method (mesh 21 × 21 –

21 × 21)

Figure 9.
Flow configuration for

case C by multi-domain
method (mesh 21 × 21 –

21 × 21)
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